Shear stress preconditioning and microbubble flow pattern modulate ultrasound-assisted plasma membrane permeabilization

剪切应力预处理和微泡流模式调节超声辅助质膜通透性

阅读:6
作者:Elahe Memari, Brandon Helfield

Abstract

The recent and exciting success of anti-inflammatory therapies for ischemic heart disease (e.g. atherosclerosis) is hindered by the lack of site-specific and targeted therapeutic deposition. Microbubble-mediated focused ultrasound, which uses circulating, lipid-encapsulated intravascular microbubbles to locally enhance endothelial permeability, offers an exciting approach. Atherosclerotic plaques preferentially develop in regions with disturbed blood flow, and microbubble-endothelial cell membrane interactions under such flow conditions are not well understood. Here, using an acoustically-coupled microscopy system, endothelial cells were sonicated (1 MHz, 20 cycle bursts, 1 ms PRI, 4 s duration, 300 kPa peak-negative pressure) under perfusion with Definity™ bubbles to examine microbubble-mediated endothelial permeabilization under a range of physiological conditions. Endothelial preconditioning under prolonged shear influenced physiology and the secretome, inducing increased expression of pro-angiogenesis analytes, decreasing levels of pro-inflammatory ones, and increasing the susceptibility of ultrasound therapy. Ultrasound treatment efficiency was positively correlated with concentrations of pro-angiogenic cytokines (e.g. VEGF-A, EGF, FGF-2), and negatively correlated with pro-inflammatory chemokines (e.g. MCP-1, GCP-2, SDF-1). Furthermore, ultrasound therapy under non-reversing pulsatile flow (∼4-8 dyne/cm2, 0.5-1 Hz) increased permeabilization up to 2.4-fold compared to shear-matched laminar flow, yet treatment under reversing oscillatory flow resulted in more heterogeneous modulation. This study provides insight into the role of vascular physiology, including endothelial biology, into the design of a localized ultrasound drug delivery system for ischemic heart disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。