Exopolysaccharides Isolated from Milk Fermented with Lactic Acid Bacteria Prevent Ultraviolet-Induced Skin Damage in Hairless Mice

从乳酸菌发酵的牛奶中分离出的胞外多糖可防止无毛小鼠因紫外线引起的皮肤损伤

阅读:4
作者:Masashi Morifuji, Masami Kitade, Tomoyuki Fukasawa, Taketo Yamaji, Masamitsu Ichihashi

Background

We studied the mechanism by which fermented milk ameliorates UV-B-induced skin damage and determined the active components in milk fermented with lactic acid bacteria by evaluating erythema formation, dryness, epidermal proliferation, DNA damage and cytokine mRNA levels in hairless mice exposed to acute UV-B irradiation.

Conclusion

Together, these results indicate that EPS isolated from milk fermented with lactic acid bacteria enhanced DNA repair mechanisms and modulated skin immunity to protect skin against UV damage.

Methods

Nine week-old hairless mice were given fermented milk (1.3 g/kg BW/day) or exopolysaccharide (EPS) concentrate (70 mg/kg BW/day) orally for ten days. Seven days after fermented milk or EPS administration began, the dorsal skin of the mice was exposed to a single dose of UV-B (20 mJ/cm²).

Results

Ingestion of either fermented milk or EPS significantly attenuated UV-B-induced erythema formation, dryness and epidermal proliferation in mouse skin. Both fermented milk and EPS were associated with a significant decrease in cyclobutane pyrimidine dimers and upregulated mRNA levels of xeroderma pigmentosum complementation group A (XPA), which is involved in DNA repair. Furthermore, administration of either fermented milk or EPS significantly suppressed increases in the ratio of interleukin (IL)-10/IL-12a and IL-10/interferon-gamma mRNA levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。