MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury

MicroRNA-214-3p 通过靶向 GPX4 加剧顺铂诱导的急性肾损伤中的铁死亡

阅读:5
作者:Junran Zhou #, Chengcheng Xiao #, Shuaishuai Zheng, Qian Wang, Hai Zhu, Yingyu Zhang, Renhe Wang

Abstract

Acute kidney injury (AKI) induced by cisplatin (cis-AKI) involves indicators such as inflammation and oxidative stress (OS) in proximal tubules, although its underlying mechanisms remain largely unknown so far. Exploration of the molecular mechanisms underlying cisplatin-induced AKI is of great significance for AKI prevention and also for preventing its progression into chronic kidney disease (CKD) or end-stage renal disease (ESRD). OS and ferroptosis are mutually causal; they finally lead to the regulatory cell injury and death induced by the accumulation of reactive oxygen species (ROS). GPX4 is critical not only in OS, but studies established as the key regulator of ferroptosis. In this context, the present study focused on determining the biological function of miR-214-3p in the cisplatin-induced ferroptosis of tubular epithelial cell (TEC) and the underlying molecular mechanism. The relationship between TEC ferroptosis and cisplatin-induced AKI was investigated in vitro and in vivo. Ferrostatin-1(Fer-1), an inhibitor of ferroptosis, was observed to confer a protective effect against the renal tubular injury and renal failure induced by cisplatin. MicroRNAs (miRNAs) regulate the genes that have important functions in the development of cis-AKI. In the present study, GPX4 was predicted as a target of miR-214-3p. Moreover, inhibiting miR-214-3p enhanced the expressions of GPX4 and SLC7A11 while decreasing the ACSL4 expression. Furthermore, miR-214-3p down-regulation protected against TEC death and renal tubule damage both in vitro and in vivo. According to these findings, inhibiting miR-214-3p would alleviate TEC ferroptosis in cis-AKI via GPX4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。