The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests

工业沼气厂微生物群落结构影响批量试验中秸秆和纤维素的降解率

阅读:5
作者:Li Sun #, Tong Liu #, Bettina Müller, Anna Schnürer

Background

Materials rich in lignocellulose, such as straw, are abundant, cheap and highly interesting for biogas production. However, the complex structure of lignocellulose is difficult for microbial cellulolytic enzymes to access, limiting degradation. The rate of degradation depends on the activity of members of the microbial community, but the knowledge of this community in the biogas process is rather limited. This study, therefore, investigated the degradation rate of cellulose and straw in batch cultivation test initiated with inoculums from four co-digestion biogas plants (CD) and six wastewater treatment plants (WWTP). The

Conclusion

The degradation rate of cellulose and straw varied in the batch tests dependent on the origin of the inoculum and was negatively correlated with the ammonia level. The cellulose-degrading community, targeted by analysis of the glycoside hydrolase families 5 (cel5) and 48 (cel48), showed a dominance of bacteria belonging the Firmicutes and Bacteriodetes, and a positive correlation was found between the cellulose degradation rate of wheat straw with the level of C. cellulolyticum.

Results

UniFrac principal coordinate analysis of 16S rRNA gene amplicons revealed a clustering of WWTPs, while the CDs were more separated from each other. Bacteroidetes and Firmicutes dominated the community with a comparably higher abundance of the latter in the processes operating at high ammonia levels. Sequences obtained from the cel5 and cel 48 clone libraries were also mainly related to the phyla Firmicutes and Bacteroidetes and here ammonia was a parameter with a strong impact on the cel5 community. The results from the batch cultivation showed similar degradation pattern for eight of the biogas plants, while two characterised by high ammonia level and low bacterial diversity, showed a clear lower degradation rate. Interestingly, two T-RFs from the cel5 community were positively correlated to high degradation rates of both straw and cellulose. One of the respective partial cel5 sequences shared 100 % identity to Clostridium cellulolyticum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。