STIM1 Deficiency In Intestinal Epithelium Attenuates Colonic Inflammation and Tumorigenesis by Reducing ER Stress of Goblet Cells

肠道上皮细胞 STIM1 缺乏可减轻杯状细胞内质网应激,从而减轻结肠炎症和肿瘤发生

阅读:5
作者:Xiaojing Liang, Jiansheng Xie, Hao Liu, Rongjie Zhao, Wei Zhang, Haidong Wang, Hongming Pan, Yubin Zhou, Weidong Han

Aims

As an indispensable component of store-operated Ca2+ entry, stromal interaction molecule 1 (STIM1) is known to promote colorectal cancer and T-cell-mediated inflammatory diseases. However, whether the intestinal mucosal STIM1 is involved in inflammatory bowel diseases (IBDs) is unclear. This study aimed to investigate the role of intestinal epithelial STIM1 in IBD.

Background & aims

As an indispensable component of store-operated Ca2+ entry, stromal interaction molecule 1 (STIM1) is known to promote colorectal cancer and T-cell-mediated inflammatory diseases. However, whether the intestinal mucosal STIM1 is involved in inflammatory bowel diseases (IBDs) is unclear. This study aimed to investigate the role of intestinal epithelial STIM1 in IBD.

Conclusions

Our results establish STIM1 as a crucial regulator for the maintenance of the intestinal barrier during colitis and provide a potential target for IBD treatment.

Methods

Inflammatory and matched normal intestinal tissues were collected from IBD patients to investigate the expression of STIM1. Intestinal epithelium-specific STIM1 conditional knockout mice (STIM1ΔIEC) were generated and induced to develop colitis and colitis-associated colorectal cancer. The mucosal barrier, including the epithelial barrier and mucus barrier, was analyzed. The mechanisms by which STIM1 regulate goblet cell endoplasmic reticulum stress and apoptosis were assessed.

Results

STIM1 could regulate intestinal epithelial homeostasis. STIM1 was augmented in the inflammatory intestinal tissues of IBD patients. In dextran sodium sulfate-induced colitis, STIM1 deficiency in intestinal epithelium reduced the loss of goblet cells through alleviating endoplasmic reticulum stress induced by disturbed Ca2+ homeostasis, resulting in the maintenance of the integrated mucus layer. These effects prevented commensal bacteria from contacting and stimulating the intestinal epithelium of STIM1ΔIEC mice and thereby rendered STIM1ΔIEC mice less susceptible to colitis and colitis-associated colorectal cancer. In addition, microbial diversity in dextran sodium sulfate-treated STIM1ΔIEC mice slightly shifted to an advantageous bacteria, which further protected the intestinal epithelium. Conclusions: Our results establish STIM1 as a crucial regulator for the maintenance of the intestinal barrier during colitis and provide a potential target for IBD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。