Alphaherpesvirus manipulates retinoic acid metabolism for optimal replication

阿尔法疱疹病毒操纵视黄酸代谢以实现最佳复制

阅读:5
作者:Shengli Ming, Shijun Zhang, Jiayou Xing, Guoyu Yang, Lei Zeng, Jiang Wang, Beibei Chu

Abstract

Retinoic acid (RA), derived from retinol (ROL), is integral to cell growth, differentiation, and organogenesis. It is known that RA can inhibit herpes simplex virus (HSV) replication, but the interactions between alphaherpesviruses and RA metabolism are unclear. Our present study revealed that alphaherpesvirus (HSV-1 and Pseudorabies virus, PRV) infections suppressed RA synthesis from ROL by activating P53, which increased retinol reductase 3 (DHRS3) expression-an enzyme that converts retinaldehyde back to ROL. This process depended on the virus-triggered DNA damage response, the degradation of class I histone deacetylases, and the subsequent hyperacetylation of histones H3 and H4. Counteracting DHRS3 or P53 enabled higher RA synthesis and reduced viral growth. RA enhanced antiviral defenses by promoting ABCA1- and ABCG1-mediated lipid efflux. Treatment with the retinoic acid receptor (RAR) agonist palovarotene protected mice from HSV-1 infection, thus providing a potential therapeutic strategy against viral infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。