Endothelial Cell Senescence Exacerbates Pulmonary Fibrosis Potentially Through Accelerated Endothelial to Mesenchymal Transition

内皮细胞衰老可能通过加速内皮细胞向间质细胞的转化而加剧肺纤维化

阅读:16
作者:Risa Ramadhiani, Koji Ikeda, Ken-Ichi Hirata, Noriaki Emoto

Abstract

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease characterized by progressive lung fibrosis and obliteration of normal alveolar structures. Myofibroblasts play a central role in the progression of IPF by producing excess amount of extracellular matrix, and these myofibroblasts show heterogenous origins including resident fibroblasts, epithelial cells via epithelial to mesenchymal transition (EMT) and endothelial cell (EC) via endothelial to mesenchymal transition (EndMT). Although lung aging has been considered as essential mechanisms through abnormal activation of epithelial cells and fibroblasts, little is known about a role of EC senescence in the pathogenesis of IPF. Here, we reveal a detrimental role of EC senescence in IPF by utilizing unique EC-specific progeroid mice. EC-specific progeroid mice showed deteriorated pulmonary fibrosis in association with an accelerated EndMT in the lungs after intratracheal bleomycin instillation. We further confirmed that premature senescent ECs were susceptible to EndMT in vitro. Because senescent cells affect nearby cells through senescence-associated secretory phenotype (SASP), we assessed a potential role of the EC-SASP in EMT and myofibroblastic transition of resident fibroblasts. EC-SASP enhanced the myofibroblastic transition in resident fibroblasts, while no effect was detected on EMT. Our data revealed a previously unknown role of EC senescence in the progression of IPF, and thus rejuvenating ECs and/or inhibiting EC-SASP is an attracting therapeutic strategy for the treatment of IPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。