Effects of millimeter-wave for preventing joint stiffness in the immobilized knee rat model

毫米波对预防大鼠膝关节固定模型中关节僵硬的影响

阅读:10
作者:Xiao-Ping Shui, Feng Ye, Chun-Ying Li, Xin Zhang, Min-Jia Wang, Bin Li, Ke Chen, Ying-Ying Liao

Aim

To explore the effects and mechanism of millimeter-wave treatment on the development of joint stiffness in the immobilized knee rat model.

Conclusion

Millimeter-wave treatment reversed joint contracture and quadriceps atrophy caused by joint fixation, inhibited TGF-β1 and Collagen I protein expression of the joint capsule and reduced MuRF1 expression of the quadriceps muscle, thereby inhibiting the development of joint stiffness.

Methods

Twenty-four Sprague-Dawley (SD) rats were randomly divided into the control group (O, n = 8), the surgical control group (OC, n = 8), and the millimeter-wave treatment group (MO, n = 8). After immobilized knee modeling, the knee mobility and quadriceps diameter was measured at the 6th week. Hematoxylin and eosin and Masson staining were performed to detect the pathology and fibrous lesions of the knee joint. Furthermore, the expression of TGF-β1 and Collagen I was quantified by immunohistochemical assay in the knee capsule, and Western blotting was performed to quantify the protein expression of NF-κB and MuRF1 in skeletal muscle.

Results

Compared with the O group, knee mobility, and quadriceps diameter was decreased (P < 0.01), and articular capsule fibrosis and quadriceps atrophy occurred in all rats with fixed knee joints. Compared with the OC group, millimeter-wave treatment significantly increased articular mobility and the quadriceps diameter; and improved the fibrotic lesions of the joint capsule and quadriceps atrophy. Moreover, levels of TGF-β1, Collagen I, and MuRF1 were upregulated (P < 0.01) by knee immobilization, and collagen fiber content in the articular capsule was also increased (P < 0.01). However, millimeter-wave treatment reversed it. The most noteworthy result was that NF-κB expression was not significantly different in all groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。