Epigenetic activation of the TUSC3 gene as a potential therapy for XMEN disease

TUSC3 基因的表观遗传激活可作为 XMEN 疾病的潜在治疗方法

阅读:7
作者:Haodong Ding, Yuwei Li, Maoxin Fang, Jiaojiao Chen, Lipin Liu, Zhigang Lu, Jia Hou, Min Luo

Background

X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect (XMEN) disease is a rare combined immunodeficiency caused by loss-of-function mutations in the magnesium transporter 1 (MAGT1) gene. MAGT1 deficiency impairs magnesium transport and the N-linked glycosylation of a panel of proteins, which subsequently abolishes the expression of key immune receptors such as natural killer group 2, member D (aka NKG2D). These effects induce immune system abnormalities, chronic Epstein-Barr virus infection, and neoplasia. Recent research shows that MAGT1 and tumor candidate suppressor 3 (TUSC3) share high sequence and functional similarity.

Conclusions

Epigenetic activation of TUSC3 expression constitutes an effective therapeutic strategy for XMEN disease.

Methods

The expression profiles of MAGT1 and TUSC3 were analyzed using multiple databases, real-time quantitative PCR, and Western blot. The effects of decitabine and panobinostat on the regulation of TUSC3 expression were explored in both MAGT1 knockout (KO)/patient-derived lymphocytes and MAGT1 KO hepatocytes.

Objective

We sought to investigate the feasibility of activating TUSC3 expression to provide a potential therapeutic strategy for XMEN disease.

Results

Although TUSC3 is widely expressed, it is undetectable specifically in the immune system and liver, consistent with the main diseased tissues in patients with XMEN disease. CRISPR/Cas9-mediated KO of MAGT1 in the NKL cell line successfully mimicked the phenotypes of XMEN patient-derived lymphocytes, and exogenous expression of TUSC3 rescued the deficiencies in KO NKL cells. Using this in vitro model, we identified 2 epigenetic drugs, decitabine and panobinostat, by screening. Combination treatment using these 2 drugs significantly upregulated TUSC3 expression and rescued the immune and liver abnormalities. Conclusions: Epigenetic activation of TUSC3 expression constitutes an effective therapeutic strategy for XMEN disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。