Therapeutic progestin segesterone acetate promotes neurogenesis: implications for sustaining regeneration in female brain

治疗性孕激素醋酸黄体酮促进神经发生:对维持女性大脑再生的意义

阅读:7
作者:Shuhua Chen, Narender Kumar, Zisu Mao, Regine Sitruk-Ware, Roberta Diaz Brinton

Conclusion

These findings provide preclinical evidence and mechanistic insights for the development of ST-1435 as a neuroregenerative therapy to promote intrinsic regenerative capacity in female brains against aging and neurodegenerative disorders.

Methods

To mimic the chronic contraception exposure in women, 3-month old female mice (n = 110) were treated with ST-1435, with or without co-administration of E2, for 4 weeks. Neural cell proliferation and survival, and oligodendrocyte generation were assessed. The involvement of insulin-like growth factor 1 signaling was studied.

Objective

Neurogenesis is the principal regenerative mechanism to sustain the plasticity potential in adult brains. Decreased neurogenesis parallels the cognition decline with aging, and has been suggested as a common hallmark in the progression of many neurodegeneration diseases. We previously reported that acute exposure to segesterone acetate (ST-1435; Nestorone), alone or in combination with 17β-estradiol (E2), increased human neural stem cells proliferation and survival both in vitro and in vivo. The present study expanded our previous findings to investigate the more clinical related chronic exposure in combination with E2 on the regenerative capacity of adult brain.

Results

Our results demonstrated that chronic ST-1435 and E2 alone or in combination increased neurogenesis by a comparable magnitude, with minimum to no antagonistic or additive effects between ST-1435 and E2. In addition, chronic exposure of ST-1435 or ST-1435 + E2 stimulated oligodendrocyte generation, indicating potential elevated myelination. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) were also up-regulated after chronic ST-1435 and E2 exposure, suggesting the involvement of IGF-1 signaling as the potential underlined regulatory pathway transducing ST-1435 effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。