Rapid communication: lipid metabolic gene expression and triacylglycerol accumulation in goat mammary epithelial cells are decreased by inhibition of SREBP-1

快速通讯:抑制SREBP-1可降低山羊乳腺上皮细胞脂质代谢基因表达和三酰甘油积累

阅读:6
作者:Huifen Xu, Jun Luo, Huibin Tian, Jun Li, Xueying Zhang, Zhi Chen, Ming Li, Juan J Loor

Abstract

In mammals, sterol regulatory element binding protein-1 (SREBP-1) is the master regulator of fatty acid and triacylglycerol synthesis. Recent gene silencing studies in mammary cells indicate that SREBP-1 has a central role in milk fat synthesis. However, SREBP-1 knockdown studies in goat mammary cells have not been performed; hence, its direct role in controlling mRNA expression of lipid metabolism genes and triacylglycerol synthesis remains unknown. Inhibition of SREBP-1 in goat mammary epithelial cells (GMEC) by small interference RNA (siRNA) markedly reduced the content of cellular triacylglycerol (~50% decrease, P < 0.05) and was partly related to downregulation of AGPAT6, LPIN1, and DGAT2 (-23%, -28% and -19%, respectively. P < 0.05), which are key enzymes involved in triacylglycerol synthesis, cellular triacylglycerol content and lipid droplet accumulation all decreased by SREBP-1 inhibition. The expression of lipid droplet formation and secretion genes was not altered in response to treatment. Although the lack of effect on expression of ACACA and FASN (rate-limiting enzymes for de novo fatty acid synthesis) with SREBP-1 knockdown was unexpected (P > 0.05), the downregulation of genes related to synthesis of acetyl-CoA and acetate activation (ACLY, ACSS2, and IDH1, P < 0.05) suggests that lipogenesis was inhibited. SREBP-1 knockdown also resulted in decreased expression of genes associated with fatty acid desaturation and elongation (SCD1 and ELOVL6, P < 0.05), long-chain fatty acid (LCFA) activation and transport (ACSL1, FABP3, and SLC27A6, P < 0.05). The results underscored the essential role of SREBP-1 not only in fatty acid synthesis but also in desaturation, elongation, and esterification in GMEC. Clearly, the lack of effect on ACACA and FASN, both of which are considered the key lipogenic enzymes, implies that there may be different regulatory mechanisms in goat compared with bovine mammary cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。