The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1

诱导铁死亡的化合物 RSL3 和 ML162 不是 GPX4 的直接抑制剂,而是 TXNRD1 的直接抑制剂

阅读:5
作者:Dorian M Cheff, Chuying Huang, Karoline C Scholzen, Radosveta Gencheva, Michael H Ronzetti, Qing Cheng, Matthew D Hall, Elias S J Arnér

Abstract

Ferroptosis is defined as cell death triggered by iron-dependent lipid peroxidation that is preventable by antioxidant compounds such as ferrostatin-1. Endogenous suppressors of ferroptosis include FSP-1 and the selenoprotein GPX4, the latter of which directly enzymatically reduces lipid hydroperoxides. Small molecules that trigger ferroptosis include RSL3, ML162, and ML210; these compounds are often used in studies of ferroptosis and are generally considered as GPX4 inhibitors. Here, we found that RSL3 and ML162 completely lack capacity of inhibiting the enzymatic activity of recombinant selenoprotein GPX4. Surprisingly, these compounds were instead found to be efficient inhibitors of another selenoprotein, TXNRD1. Other known inhibitors of TXNRD1, including auranofin, TRi-1 and TRi-2, are also efficient inducers of cell death but that cell death could not be suppressed with ferrostatin-1. Our results collectively suggest that prior studies using RSL3 and ML162 may need to be reevaluated in the context of ferroptosis with regards to additional enzyme targets and mechanisms of action that may be involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。