Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity

木犀草素通过下调 Cdc42 表达和 PI3K/AKT 活性来抑制人类胶质母细胞瘤 U-87 MG 和 T98G 细胞的迁移

阅读:5
作者:Wen-Yu Cheng, Ming-Tsang Chiao, Yea-Jiuen Liang, Yi-Chin Yang, Chiung-Chyi Shen, Chiou-Ying Yang

Abstract

Luteolin (3',4',5,7-tetrahydroxyflavone) is a common flavonoid in many types of plants and has several beneficial biological effects, including anti-inflammation, anti-oxidant, and anti-cancer properties. However, the detail mechanisms of luteolin in suppressing tumor invasion and metastasis are poorly understood. Here, we investigated the effects of luteolin on suppressing glioblastoma tumor cell invasion and migration activity. Under the non-cytotoxic doses (15 and 30 μM), luteolin exhibited an inhibitory effect on migration and invasion in U-87 MG and T98G glioblastoma cells. Additionally, filopodia assembly in U-87 MG cells was markedly suppressed after luteolin treatment. The treatment of luteolin also showed a decrease of Cdc42 (cell division cycle 42) protein levels and reduced PI3K/AKT activation, whereas there was no association between this decrease and phosphorylated ERK or altered transcription levels of Cdc42. Over expression of constitutive Cdc42 (Q61L) using transient transfection in U-87 MG cells induced a partial cell migration, but did not affected the degradation of the protein levels of Cdc42 after luteolin treatment. Moreover, inhibition of the proteaosome pathway by MG132 caused a significant recovery in the migration ability of U-87 MG cells and augmented the Cdc42 protein levels after luteolin treatment, suggesting that pharmacological inhibition of migration via luteolin treatment is likely to preferentially facilitate the protein degradation of Cdc42. Taken together, the study demonstrated that flavonoids of luteolin prevent the migration of glioblastoma cells by affecting PI3K/AKT activation, modulating the protein expression of Cdc42 and facilitating their degradation via the proteaosome pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。