MitoQ ameliorates PM2.5-induced pulmonary fibrosis through regulating the mitochondria DNA homeostasis

MitoQ 通过调节线粒体 DNA 稳态改善 PM2.5 引起的肺纤维化

阅读:5
作者:Yang Li, Zhou Du, Tianyu Li, Xiaoke Ren, Yang Yu, Junchao Duan, Zhiwei Sun

Abstract

Pulmonary fibrosis is a severe pulmonary disease, and may related to PM2.5 exposure. Our study aims to explore the pathogenesis of PM2.5-induced pulmonary fibrosis, and MitoQ protective effect in this process. Our results find that inflammatory cells aggregation and pulmonary fibrosis in mice lung after PM2.5 exposure. Moreover, Collagen I/III overproduction, EMT and TGF-β1/Smad2 pathway activation in mice lung and BEAS-2B after PM2.5 exposure. Fortunately, these changes were partially ameliorated after MitoQ treatment. Meanwhile, severe oxidative stress, mitochondrial homeostasis imbalance, overproduction of 8-oxoG (7,8-dihydro-8-oxoguanine), as well as the inhibition of SIRT3/OGG1 pathway have founded in mice lung or BEAS-2B after PM2.5 exposure, which were alleviated by MitoQ treatment. Collectively, our study found that oxidative stress, especially mitochondrial oxidative stress participates in the PM2.5-induced pulmonary fibrosis, and MitoQ intervention had a protective effect on this progress. Moreover, mitochondrial DNA homeostasis might participate in the pulmonary fibrosis caused by PM2.5 exposure. Our study provides a novel pathogenesis of PM2.5-caused pulmonary fibrosis and a possible targeted therapy for the pulmonary diseases triggered by PM2.5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。