Adenosine production by human B cells and B cell-mediated suppression of activated T cells

人类 B 细胞产生腺苷以及 B 细胞介导的活化 T 细胞抑制

阅读:8
作者:Zenichiro Saze, Patrick J Schuler, Chang-Sook Hong, Dongmei Cheng, Edwin K Jackson, Theresa L Whiteside

Abstract

Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5'-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A&sub1;, A2A, A2B, and A&sub3; adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5'-AMP and ADO, and express messenger RNA for A&sub1;R, A2AR, and A&sub3;R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A&sub3;R selective antagonist restored B-cell functions. This suggested that B cells use the A&sub3;R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4⁺ and CD8⁺ T cells. However, in vitro-activated B cells downregulated CD73 expression, mainly produced 5'-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell-B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5'-AMP, and ADO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。