Perfluorooctanoic acid (PFOA) as a stimulator of estrogen receptor-negative breast cancer MDA-MB-231 cell aggressiveness: Evidence for involvement of fatty acid 2-hydroxylase (FA2H) in the stimulated cell migration

全氟辛酸 (PFOA) 作为雌激素受体阴性乳腺癌 MDA-MB-231 细胞侵袭性的刺激剂:脂肪酸 2-羟化酶 (FA2H) 参与刺激细胞迁移的证据

阅读:7
作者:Genki Sakai, Masayo Hirao-Suzuki, Takayuki Koga, Takananobu Kobayashi, Jun Kamishikiryo, Michitaka Tanaka, Kiyonaga Fujii, Masufumi Takiguchi, Narumi Sugihara, Akihisa Toda, Shuso Takeda

Abstract

Detailed in vitro studies on the effects of perfluorooctanoic acid (PFOA) have demonstrated that activation of peroxisome proliferator-activated receptor α (PPARα) is a key process by which PFOA affects the malignancy of estrogen receptor α (ERα)-positive breast cancer cells. However, there is very little information on the PPARα-regulated genes responsible for the effects of PFOA in ERα-negative breast cancer cell malignancy. We recently demonstrated that fatty acid 2-hydroxylase (FA2H) stimulates the migration of ERα-negative human MDA-MB-231 cells, and PPARα is a key factor for the induction of FA2H in these cells. However, evidence for the relationship between PFOA exposure and PPARα-FA2H axis-driven migration has not been obtained. Here we analyzed the effects of PFOA on PPARα transcription and FA2H expression in relation to MDA-MB-231 cell migration. We found that simultaneously with stimulated migration, PFOA upregulated FA2H and activated the transcription of PPARα. FA2H-selective siRNA, but not siRNA control, clearly dampened PFOA-mediated cell migration. There is an inhibitory interaction between PPARα and PPARβ/δ (i.e., PPARβ/δ can suppress PPARα-mediated transcription) in MDA-MB-231 cells, but even in the presence of PPARβ/δ expression, PFOA appeared to free PPARα to upregulate FA2H. Collectively, our findings show that i) PFOA activates PPARα-mediated transcription, ii) PFOA stimulates migration dependent on FA2H expression, and iii) mechanistically, PFOA relieves PPARβ/δ suppression of PPARα activity to upregulate FA2H in MDA-MB-231 cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。