Pancreatic carcinoma, pancreatitis, and healthy controls: metabolite models in a three-class diagnostic dilemma

胰腺癌、胰腺炎和健康对照:三类诊断困境中的代谢物模型

阅读:6
作者:Alexander Benedikt Leichtle, Uta Ceglarek, Peter Weinert, Christos T Nakas, Jean-Marc Nuoffer, Julia Kase, Tim Conrad, Helmut Witzigmann, Joachim Thiery, Georg Martin Fiedler

Abstract

Metabolomics as one of the most rapidly growing technologies in the "-omics" field denotes the comprehensive analysis of low molecular-weight compounds and their pathways. Cancer-specific alterations of the metabolome can be detected by high-throughput mass-spectrometric metabolite profiling and serve as a considerable source of new markers for the early differentiation of malignant diseases as well as their distinction from benign states. However, a comprehensive framework for the statistical evaluation of marker panels in a multi-class setting has not yet been established. We collected serum samples of 40 pancreatic carcinoma patients, 40 controls, and 23 pancreatitis patients according to standard protocols and generated amino acid profiles by routine mass-spectrometry. In an intrinsic three-class bioinformatic approach we compared these profiles, evaluated their selectivity and computed multi-marker panels combined with the conventional tumor marker CA 19-9. Additionally, we tested for non-inferiority and superiority to determine the diagnostic surplus value of our multi-metabolite marker panels. Compared to CA 19-9 alone, the combined amino acid-based metabolite panel had a superior selectivity for the discrimination of healthy controls, pancreatitis, and pancreatic carcinoma patients [Formula: see text] We combined highly standardized samples, a three-class study design, a high-throughput mass-spectrometric technique, and a comprehensive bioinformatic framework to identify metabolite panels selective for all three groups in a single approach. Our results suggest that metabolomic profiling necessitates appropriate evaluation strategies and-despite all its current limitations-can deliver marker panels with high selectivity even in multi-class settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。