METTL3 affects FLT3-ITD+ acute myeloid leukemia by mediating autophagy by regulating PSMA3-AS1 stability

METTL3 通过调节 PSMA3-AS1 稳定性介导自噬来影响 FLT3-ITD+ 急性髓系白血病

阅读:5
作者:Shenghao Wu, Shanshan Weng, Wenjin Zhou, Yuemiao Chen, Zhen Liu

Abstract

The study was designed to explore the role of PSMA3-AS1 in initiation and progression of acute myeloid leukemia (AML) and investigate its action mechanism. Expression of PSMA3-AS1, miR-20a-5p and ATG16L1 both in vitro and in vivo was measured by qRT-PCR. The expression of protein was detected by western blot assay. Edu staining and flow cytometry were utilized to measure cell proliferation and apoptosis. Potential target was predicted by bioinformatics and was verified by dual-luciferase report gene assay and RNA pull down assay. QRT-PCR was used to quantify autophagy (LC3, Beclin1, P62) related genes. The m6A modification test is used to verify the effect of METTL3 on PSMA3-AS1. Tumor model was used to identify the effect of PSMA3-AS1 on tumor growth in vivo, and immunohistochemistry was applied to detect expression of ki67 and TUNEL. The results indicate that PSMA3-AS1 was upregulated in FLT3-ITD+ AML patients. Si-PSMA3-AS1 could inhibit the proliferation, autophagy and promote the apoptosis in MV4-11 and Molm13 cells. METTL3 could enhance the PSMA3-AS1 RNA stability. In addition, this study revealed that PSMA3-AS1 affected FLT3-ITD+ AML by targeting expression of miR-20a-5p, and miR-20a-5p further modulated expression of ATG16L1, an mRNA that down-regulated in AML, to affect disease advancement. PSMA3-AS1 could promote FLT3-ITD+ AML progression by regulating the level of autophagy through miR-20a-5p/ATG16L1 pathway. In addition, the increase of PSMA3-AS1 may be caused by the involvement of METTL3 in regulating its stability. This discovery will provide new horizons for early screening and targeted therapy of FLT3-ITD+ AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。