Tuberomics: a molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments

Tuberomics:食用菌(Tuber magnatum Pico)适应不同自然环境的分子分析

阅读:5
作者:Federico Vita, Beatrice Giuntoli, Edoardo Bertolini, Cosimo Taiti, Elettra Marone, Chiara D'Ambrosio, Emanuela Trovato, Danilo Sciarrone, Mariosimone Zoccali, Raffaella Balestrini, Andrea Scaloni, Luigi Mondello, Stefano Mancuso, Massimo Alessio, Amedeo Alpi

Background

Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its price and features are mostly depending on its geographical origin. However, the genetic variation within T. magnatum has been only partially investigated as well as its adaptation to several environments.

Conclusions

Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.

Results

Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them according to molecular and biochemical traits and to verify the impact of several environments on these properties. With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the latter data was able to return high confidence predictions of sample source. Conclusions: Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。