Polysaccharides From the Aerial Parts of Tetrastigma Hemsleyanum Diels et Gilg Induce Bidirectional Immunity and Ameliorate LPS-Induced Acute Respiratory Distress Syndrome in Mice

四柱树地上部分的多糖可诱导小鼠双向免疫并改善 LPS 诱发的小鼠急性呼吸窘迫综合征

阅读:7
作者:Jingjing Lu, Bingqi Zhu, Fangmei Zhou, Xinghong Ding, Chaodong Qian, Zhishan Ding, Xiaoqing Ye

Abstract

Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing, SYQ) has traditionally been used to treat inflammation, high fever and improve immune function of patients. Polysaccharides have been proved to be one of the important components of SYQ. Previous studies have confirmed the antipyretic and antitumor effects of polysaccharides from SYQ (SYQP), and clarified that SYQP could enhance immunity through TLR4 signalling pathway. However, there were more possibilities for the mechanism by which SYQP exerted immunomodulatory effects and the role of SYQP in acute respiratory distress syndrome (ARDS) is elusive. The purpose of this study was further to explain the bidirectional modulation of immunity mechanism of SYQP in vitro and its effect in LPS-induced ARDS in vivo. Experimental results showed that SYQP significantly stimulated gene expressions of TLR1, TLR2 and TLR6 and secretion of cytokines in RAW264.7 cells. Individual or combined application of TLR2 antagonist C29 and TLR4 antagonist TAK-242 could reduce SYQP-mediated stimulation of cytokine secretion in RAW264.7 cells and mouse peritoneal macrophages (MPMs) to varying degrees. On the other hand, SYQP markedly inhibited the expression levels of inflammatory cytokines, NO, iNOS and COX-2 in LPS-treatment RAW264.7 cells. Moreover, in vivo results indicated that SYQP significantly reduced LPS-induced damage in ARDS mice through alleviating LPS-induced pulmonary morphological damage, inhibiting myeloperoxidase (MPO) expression levels, ameliorating the inflammatory cells in bronchoalveolar lavage fluid (BALF) and improving hematological status. Meanwhile, SYQP evidently reduced IL-6, TNF-α and IFN-γ secretion, the overexpression levels of TLR2 and TLR4, as well as the phosphorylation of NF-κB p65. In addition, SYQP reduced the phosphorylation of JAK2 and STAT1 and the overexpression of NLRP3, caspase-1, caspase-3 and caspase-8 in lung tissues of ARDS mice. In summary, our study confirmed that SYQP induced bidirectional immunity and ameliorated LPS-induced acute respiratory distress syndrome in mice through TLR2/TLR4-NF-κB, NLRP3/caspase and JAK/STAT signaling pathways, which provided a theoretical basis for further use of SYQP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。