Background
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is expressed on human eosinophils, where its ligation induces cell death. Paradoxically, Siglec-8-mediated cell death is markedly enhanced by the presence of the activation and survival factor IL-5 and becomes independent of caspase activity.
Conclusions
In activated eosinophils ligation of Siglec-8 leads to ROS-dependent enhancement of IL-5-induced ERK phosphorylation, which results in a novel mode of biochemically regulated eosinophil cell death.
Methods
Human peripheral blood eosinophils were treated with agonistic anti-Siglec-8 antibody and IL-5, and cell death was determined by using flow cytometry and morphology. Phosphorylation of mitogen-activated protein kinase (MAPK) was determined by using phosphoLuminex, flow cytometry, and Western blotting. Reactive oxygen species (ROS) accumulation was determined by using dihydrorhodamine fluorescence.
Objective
In this report we investigate the mechanism of Siglec-8-mediated cell death in activated eosinophils.
Results
Costimulation with anti-Siglec-8 and IL-5 significantly increased the rate and proportion of cell death by means of necrosis accompanied by granule release compared with that seen after stimulation with anti-Siglec-8 alone, in which apoptosis predominated. Together with the caspase-independent mode of cell death in costimulated cells, these findings suggest the activation of a specific and distinct biochemical pathway of cell death during anti-Siglec-8/IL-5 costimulation. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and MAPK-ERK kinase (MEK) 1 was significantly enhanced and sustained in costimulated cells compared with that seen in cells stimulated with IL-5 alone; anti-Siglec-8 alone did not cause ERK1/2 phosphorylation. MEK1 inhibitors blocked anti-Siglec-8/IL-5-induced cell death. ROS accumulation was induced by Siglec-8 ligation in a MEK-independent manner. In contrast, an ROS inhibitor prevented the anti-Siglec-8/IL-5-induced enhancement of ERK phosphorylation and cell death. Exogenous ROS mimicked stimulation by anti-Siglec-8 and was sufficient to induce enhanced cell death in IL-5-treated cells. Collectively, these data suggest that the enhancement of ERK phosphorylation is downstream of ROS generation. Conclusions: In activated eosinophils ligation of Siglec-8 leads to ROS-dependent enhancement of IL-5-induced ERK phosphorylation, which results in a novel mode of biochemically regulated eosinophil cell death.
