Abstract
This paper reports on the development of a technology involving 100Mo100Mo<math> <mrow><msup><mrow></mrow> <mn>100</mn></msup> <mtext>Mo</mtext></mrow> </math> -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ∼1kg∼1kg<math><mrow><mo>∼</mo> <mn>1</mn> <mspace></mspace> <mtext>kg</mtext></mrow> </math> ), high optical quality, radiopure 100Mo100Mo<math> <mrow><msup><mrow></mrow> <mn>100</mn></msup> <mtext>Mo</mtext></mrow> </math> -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100Mo100Mo<math> <mrow><msup><mrow></mrow> <mn>100</mn></msup> <mtext>Mo</mtext></mrow> </math> (3034 keV) is 4-6 keV FWHM. The rejection of the αα<math><mi>α</mi></math> -induced dominant background above 2.6 MeV is better than 8σ8σ<math><mrow><mn>8</mn> <mi>σ</mi></mrow> </math> . Less than 10μBq/kg10μBq/kg<math><mrow><mn>10</mn> <mspace></mspace> <mi>μ</mi> <mtext>Bq/kg</mtext></mrow> </math> activity of 232Th(228Th)232Th(228Th)<math> <mrow><msup><mrow></mrow> <mn>232</mn></msup> <mtext>Th</mtext> <mspace></mspace> <mrow><msup><mo>(</mo> <mn>228</mn></msup> <mtext>Th</mtext> <mo>)</mo></mrow> </mrow> </math> and 226Ra226Ra<math> <mrow><msup><mrow></mrow> <mn>226</mn></msup> <mtext>Ra</mtext></mrow> </math> in the crystals is ensured by boule recrystallization. The potential of 100Mo100Mo<math> <mrow><msup><mrow></mrow> <mn>100</mn></msup> <mtext>Mo</mtext></mrow> </math> -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10kg×d10kg×d<math><mrow><mn>10</mn> <mspace></mspace> <mtext>kg</mtext> <mo>×</mo> <mtext>d</mtext></mrow> </math> exposure: the two neutrino double-beta decay half-life of 100Mo100Mo<math> <mrow><msup><mrow></mrow> <mn>100</mn></msup> <mtext>Mo</mtext></mrow> </math> has been measured with the up-to-date highest accuracy as T1/2T1/2<math><msub><mi>T</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msub> </math> = [6.90 ± 0.15(stat.) ± 0.37(syst.)] ×1018years×1018years<math><mrow><mo>×</mo> <mspace></mspace> <msup><mn>10</mn> <mn>18</mn></msup> <mspace></mspace> <mtext>years</mtext></mrow> </math> . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100Mo100Mo<math> <mrow><msup><mrow></mrow> <mn>100</mn></msup> <mtext>Mo</mtext></mrow> </math> .
