Transcription factor Mohawk and the pathogenesis of human anterior cruciate ligament degradation

转录因子Mohawk与人类前交叉韧带退化的发病机制

阅读:4
作者:Hiroyuki Nakahara, Akihiko Hasegawa, Koji Otabe, Fumiaki Ayabe, Tetsuya Matsukawa, Naoko Onizuka, Yoshiaki Ito, Toshifumi Ozaki, Martin K Lotz, Hiroshi Asahara

Conclusion

Reduced expression of MKX is a feature of degenerated ACL in OA-affected joints, and this may be mediated in part by IL-1β. MKX appears necessary to maintain the tissue-specific cellular differentiation status and ECM production in adult human tendons and ligaments.

Methods

Knee joints were obtained at autopsy (within 24-48 hours postmortem) from 13 donors with normal knees (mean ± SD age 36.9 ± 11.0 years), 16 donors with knee OA (age 79.7 ± 11.4 years), and 8 aging donors without knee OA (age 76.9 ± 12.9 years). All cartilage surfaces were graded macroscopically. MKX expression was analyzed by immunohistochemistry and quantitative polymerase chain reaction. ACL-derived cells were used to study regulation of MKX expression by interleukin-1β (IL-1β). MKX was knocked down with small interfering RNA (siRNA) to analyze the function of MKX in extracellular matrix (ECM) production and differentiation in ACL-derived cells.

Objective

To investigate the expression and function of Mohawk (MKX) in human adult anterior cruciate ligament (ACL) tissue and ligament cells from normal and osteoarthritis (OA)-affected knees.

Results

The expression of MKX was significantly decreased in ACL-derived cells from OA knees compared with normal knees. Consistent with this finding, immunohistochemistry analysis showed that MKX-positive cells were significantly reduced in ACL tissue from OA donors, in particular in cells located in disorientated fibers. In ACL-derived cells, IL-1β strongly suppressed MKX expression and reduced expression of the ligament ECM genes COL1A1 and TNXB. In contrast, SOX9, a chondrocyte master transcription factor, was up-regulated by IL-1β treatment. Importantly, knockdown of MKX expression with siRNA up-regulated SOX9 expression in ACL-derived cells, whereas the expression of COL1A1 and TNXB was reduced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。