Role of protein S in castration-resistant prostate cancer-like cells

蛋白S在去势抵抗性前列腺癌样细胞中的作用

阅读:8
作者:Peng Ning, Jia-Guo Zhong, Fan Jiang, Yi Zhang, Jie Zhao, Feng Tian, Wei Li

Abstract

Understanding how castration-resistant prostate cancer (CRPC) cells survive the androgen-deprivation condition is crucial for treatment of this advanced prostate cancer (PCa). Here, we reported for the first time the up-regulation of protein S (PROS), an anticoagulant plasma glycoprotein with multiple biological functions, in androgen-insensitive PCa cells and in experimentally induced castration-resistant PCa cells. Overexpression of exogenous PROS in LNCaP cells reduced androgen deprivation-induced apoptosis and enhanced anchorage-dependent clonogenic ability under androgen deprivation condition. Reciprocally, PROS1 knockdown inhibited cell invasiveness and migration, caused the growth inhibition of castration-resistant tumor xenograft under androgen-depleted conditions, and potentiated Taxol (a widely prescribed anti-neoplastic agent)-mediated cell death in PC3 cells. Furthermore, PROS overexpression significantly stimulated AKT activation but failed to evoke oxidative stress in LNCaP cells under normal condition, suggesting that the malignance-promoting effects of the above-mentioned pathway may occur in the order of oxidative stress/PROS/AKT. The potential mechanism may be due to control of oxidative stress-elicited activation of PI3K-AKT-mTOR pathway. Taken together, our gain-of-function, loss-of-function analyses suggest that PROS may facilitate cell proliferation and promote castration resistance in human castration-resistant PCa-like cells via its apoptosis-regulating property. Future study emphasizing on delineating how PROS regulate cellular processes controlling transformation during the development of castration resistance should open new doors for the development of novel therapeutic targets for CRPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。