ADAM17 silencing by adenovirus encoding miRNA-embedded siRNA revealed essential signal transduction by angiotensin II in vascular smooth muscle cells

通过编码 miRNA 嵌入 siRNA 的腺病毒沉默 ADAM17 揭示了血管紧张素 II 在血管平滑肌细胞中的重要信号转导

阅读:5
作者:Katherine J Elliott, Allison M Bourne, Takehiko Takayanagi, Akira Takaguri, Tomonori Kobayashi, Kunie Eguchi, Satoru Eguchi

Abstract

Small interfering RNA (siRNA) mediated gene silencing has been utilized as a powerful molecular tool to study the functional significance of a specific protein. However, due to transient gene silencing and insufficient transfection efficiency, this approach can be problematic in primary cell culture such as vascular smooth muscle cells. To overcome this weakness, we utilized an adenoviral-encoded microRNA (miRNA)-embedded siRNA "mi/siRNA"-based RNA interference. Here, we report the results of silencing a disintegrin and metalloprotease 17 (ADAM17) in cultured rat vascular smooth muscle cells and its functional mechanism in angiotensin II signal transduction. 3 distinct mi/siRNA sequences targeting rat ADAM17 were inserted into pAd/CMV/V5-DEST and adenoviral solutions were obtained. Nearly 90% silencing of ADAM17 was achieved when vascular smooth muscle cells were infected with 100 multiplicity of infection of each ADAM17 mi/siRNA encoding adenovirus for 3days. mi/siRNA-ADAM17 but not mi/siRNA-control inhibited angiotensin II-induced epidermal growth factor receptor trans-activation and subsequent extracellular signal-regulated kinase activation and hypertrophic response in the cells. mi/siRNA-ADAM17 also inhibited angiotensin II-induced heparin-binding epidermal growth factor-like factor shedding. This inhibition was rescued with co-infection of adenovirus encoding mouse ADAM17 but not by its cytosolic domain deletion mutant or cytosolic Y702F mutant. As expected, angiotensin II induced tyrosine phosphorylation of ADAM17 in the cells. In conclusion, ADAM17 activation via its tyrosine phosphorylation contributes to heparin-binding epidermal growth factor-like factor shedding and subsequent growth promoting signals induced by angiotensin II in vascular smooth muscle cells. An artificial mi/siRNA-based adenoviral approach appears to be a reliable gene-silencing strategy for signal transduction research in primary cultured vascular cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。