AR Signaling in Prostate Cancer Regulates a Feed-Forward Mechanism of Androgen Synthesis by Way of HSD3B1 Upregulation

前列腺癌中的 AR 信号通过 HSD3B1 上调来调节雄激素合成的前馈机制

阅读:7
作者:Daniel Hettel, Ao Zhang, Mohammad Alyamani, Michael Berk, Nima Sharifi

Abstract

3βHSD1 enzymatic activity is essential for synthesis of potent androgens from adrenal precursor steroids in prostate cancer. A germline variant in HSD3B1, the gene that encodes 3βHSD1, encodes for a stable enzyme, regulates adrenal androgen dependence, and is a predictive biomarker of poor clinical outcomes after gonadal testosterone deprivation therapy. However, little is known about HSD3B1 transcriptional regulation. Generally, it is thought that intratumoral androgen synthesis is upregulated after gonadal testosterone deprivation, enabling development of castration-resistant prostate cancer. Given its critical role in extragonadal androgen synthesis, we sought to directly interrogate the transcriptional regulation of HSD3B1 in multiple metastatic prostate cancer cell models. Surprisingly, we found that VCaP, CWR22Rv1, LNCaP, and LAPC4 models demonstrate induction of HSD3B1 upon androgen stimulation for approximately 72 hours, followed by attenuation around 120 hours. 3βHSD1 protein levels mirrored transcriptional changes in models harboring variant (LNCaP) and wild-type (LAPC4) HSD3B1, and in these models androgen induction of HSD3B1 is abrogated via enzalutamide treatment. Androgen treatment increased flux from [3H]-dehydroepiandrosterone to androstenedione and other downstream metabolites. HSD3B1 expression was reduced 72 hours after castration in the VCaP xenograft mouse model, suggesting androgen receptor (AR) regulation of HSD3B1 also occurs in vivo. Overall, these data suggest that HSD3B1 is unexpectedly positively regulated by androgens and ARs. These data may have implications for the development of treatment strategies tailored to HSD3B1 genotype status.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。