The majority of lipoprotein lipase in plasma is bound to remnant lipoproteins: A new definition of remnant lipoproteins

血浆中大部分脂蛋白脂肪酶与残留脂蛋白结合:残留脂蛋白的新定义

阅读:4
作者:Koichi Sato, Fumikazu Okajima, Kazuya Miyashita, Shigeyuki Imamura, Junji Kobayashi, Kimber L Stanhope, Peter J Havel, Tetsuo Machida, Hiroyuki Sumino, Masami Murakami, Ernst Schaefer, Katsuyuki Nakajima

Background

Lipoprotein lipase (LPL) is a multifunctional protein and a key enzyme involved in the regulation of lipoprotein metabolism. We determined the lipoproteins to which LPL is bound in the pre-heparin and post-heparin plasma.

Conclusions

It is suggested that during lipolysis in vivo, the endothelial bound LPL dimers generates RLP, forming circulating RLP-LPL complexes in an inactive form that subsequently binds and initiates receptor-mediated catabolism.

Methods

Tetrahydrolipstatin (THL), a potent inhibitor of serine lipases, was used to block the lipolytic activity of LPL, thereby preventing changes in the plasma lipoproteins due to ex vivo lipolysis. Gel filtration was performed to obtain the LPL elution profiles in plasma and the isolated remnant lipoproteins (RLP).

Results

When ex vivo lipolytic activity was inhibited by THL in the post-heparin plasma, majority of the LPL was found in the VLDL elution range, specifically in the RLP as inactive dimers. However, in the absence of THL, most of the LPL was found in the HDL elution range as active dimers. Furthermore, majority of the LPL in the pre-heparin plasma was found in the RLP as inactive form, with broadly diffused lipoprotein profiles in the presence and absence of THL. Conclusions: It is suggested that during lipolysis in vivo, the endothelial bound LPL dimers generates RLP, forming circulating RLP-LPL complexes in an inactive form that subsequently binds and initiates receptor-mediated catabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。