Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson's disease

山奈酚通过促进自噬减轻 LD 线粒体损伤:对帕金森病的影响

阅读:5
作者:Xiaojuan Han, Shengnan Zhao, Hua Song, Tianshu Xu, Qijun Fang, Gang Hu, Linyun Sun

Abstract

Emerging evidence indicates that unexpected lipid droplet (LD) deposition and peroxidation can accelerate organelle stress and plays a crucial role in the pathogenesis of neurodegenerative diseases (NDDs). In our previous study, we confirmed that kaempferol (Ka), a natural flavonoid small molecule, exhibited neuroprotective effects on mice with LPS-induced Parkinson's disease (PD). In addition, previous studies have shown that autophagy plays an important role in the regulation of cellular LD deposition. In the current study, we showed that Ka protected against TH+ neuronal loss and behavioral deficits in MPTP/p-induced PD mice, accompanied by reduced lipid oxidative stress in the substantia nigra pars compacta (SNpc). In cultured neuronal cells, Ka exhibited a relatively safe concentration range and significantly suppressed LD accumulation and cellular apoptosis induced by MPP+. Further study indicated that the protective effect of Ka was dependent on autophagy, specifically lipophagy. Critically, Ka promoted autophagy to mediate LD degradation in lysosomes, which then alleviated lipid deposition and peroxidation and the resulting mitochondrial damage, consequently reducing neuronal death. Furthermore, AAV-shAtg5-mediated Atg5 knockdown abolished the neuroprotective effects of Ka against lipid oxidation in PD mice. This work demonstrates that Ka prevents dopaminergic neuronal degeneration in PD via the inhibition of lipid peroxidation-mediated mitochondrial damage by promoting lipophagy and provides a potential novel therapeutic strategy for PD and related NDDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。