miR-146a aggravates cognitive impairment and Alzheimer disease-like pathology by triggering oxidative stress through MAPK signaling

miR-146a 通过 MAPK 信号引发氧化应激,加剧认知障碍和阿尔茨海默病样病理

阅读:8
作者:H Zhan-Qiang, Q Hai-Hua, Z Chi, W Miao, Z Cui, L Zi-Yin, H Jing, W Yi-Wei

Conclusions

Our research demonstrates that miR-146a-5pa increases Aβ deposition by triggering oxidative stress through activation of MAPK signaling.

Methods

To create a model of AD, SH-SY5Y cells were treated with Aβ1-42 and mice received intracerebroventricular injections of Aβ1-42. Then, the transcriptional levels of miR-146a were estimated by real-time PCR. We transiently transfected the miR-146a-5p mimic/inhibitor into cells and mice to study the role of miR-146a. The role of signaling pathways including p38 and reactive oxygen species (ROS) was studied by using specific inhibitors. Aβ and amyloid-beta precursor protein (APP)levels were measured by immunoblotting. Furthermore, Aβ expression was analyzed by immunofluorescence and histochemical examinations.

Results

Aβ1-42-stimulated SH-SY5Y cells displayed increased transcriptional levels of miR-146a and APP. Moreover, the p38 MAPK signaling pathway and ROS production were activated upon stimulation with a miR-146a-5p mimic. However, treatment with a miR-146a-5p inhibitor decreased the levels of APP, ROS, and p-p38 MAPK. A similar phenomenon was also observed in the animals treated with Aβ1-42, in which miR-146a upregulation increased the expression of Aβ, p-p38, and ROS, while the inhibition of miR-146a had the opposite effect. This suggests that miR-146a increases Aβ deposition and ROS accumulation via the p-p38 signaling pathway. Conclusions: Our research demonstrates that miR-146a-5pa increases Aβ deposition by triggering oxidative stress through activation of MAPK signaling.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。