Exploring Zinc-Doped Manganese Hexacyanoferrate as Cathode for Aqueous Zinc-Ion Batteries

探索锌掺杂的六氰基铁酸锰作为水系锌离子电池的正极

阅读:7
作者:Julen Beitia, Isabel Ahedo, Juan Ignacio Paredes, Eider Goikolea, Idoia Ruiz de Larramendi

Abstract

Aqueous zinc-ion batteries (AZiBs) have emerged as a promising alternative to lithium-ion batteries as energy storage systems from renewable sources. Manganese hexacyanoferrate (MnHCF) is a Prussian Blue analogue that exhibits the ability to insert divalent ions such as Zn2+. However, in an aqueous environment, MnHCF presents weak structural stability and suffers from manganese dissolution. In this work, zinc doping is explored as a strategy to provide the structure with higher stability. Thus, through a simple and easy-to-implement approach, it has been possible to improve the stability and capacity retention of the cathode, although at the expense of reducing the specific capacity of the system. By correctly balancing the amount of zinc introduced into the MnHCF it is possible to reach a compromise in which the loss of capacity is not critical, while better cycling stability is obtained.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。