Glycyrrhizic acid exerts protective effects against hypoxia/reoxygenation-induced human coronary artery endothelial cell damage by regulating mitochondria

甘草酸通过调节线粒体对缺氧/复氧引起的人冠状动脉内皮细胞损伤发挥保护作用

阅读:4
作者:Quan Tang, Yuping Cao, Wei Xiong, Xixian Ke, Jian Zhang, Yu Xia, Daxing Liu

Abstract

Hypoxia/reoxygenation (H/R) is one of the main causes of coronary artery disease (CAD), which is primarily induced by damage to coronary artery endothelial cells (CAECs). Glycyrrhizic acid (GA) is a natural and abundant pentacyclic triterpenoid glycoside of the licorice root extract, and it has been reported to elicit protective effects against hypoxia, inflammation and apoptosis in ischemic myocardium; therefore, GA may serve as a promising therapeutic agent for ischemia-associated CAD. In the present study, the protective effects of GA against H/R-induced injury in CAECs were investigated. Treatment with GA during H/R maintained cell viability and decreased H/R-induced cell apoptosis in human CAECs. In addition, H/R-mediated induction of intracellular and mitochondrial reactive oxygen species (ROS) was significantly decreased by GA exposure. Similar to ROS scavengers, GA treatment not only exhibited protective effects, but also maintained the mitochondrial membrane potential after H/R and inhibited H/R-induced mitochondrial dysfunction, including deficits in ATP synthesis, mitochondrial DNA copy number and mitochondrial transcriptional activity. Furthermore, GA decreased autophagy/mitophagy, and its protective effect against H/R was abolished by autophagy promotion. Collectively, the results suggested that GA exhibited protective effects against H/R-induced CAEC injury by decreasing ROS accumulation and maintaining mitochondrial homeostasis. Further investigation into the precise mechanisms underlying the decrease in ROS accumulation induced by GA is required.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。