Identification of New Chemoresistance-Associated Genes in Triple-Negative Breast Cancer by Single-Cell Transcriptomic Analysis

通过单细胞转录组分析鉴定三阴性乳腺癌中新的化学耐药相关基因

阅读:5
作者:Spyros Foutadakis, Dimitrios Kordias, Giannis Vatsellas, Angeliki Magklara

Abstract

Triple-negative breast cancer (TNBC) is a particularly aggressive mammary neoplasia with a high fatality rate, mainly because of the development of resistance to administered chemotherapy, the standard treatment for this disease. In this study, we employ both bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) to investigate the transcriptional landscape of TNBC cells cultured in two-dimensional monolayers or three-dimensional spheroids, before and after developing resistance to the chemotherapeutic agents paclitaxel and doxorubicin. Our findings reveal significant transcriptional heterogeneity within the TNBC cell populations, with the scRNA-seq identifying rare subsets of cells that express resistance-associated genes not detected by the bulk RNA-seq. Furthermore, we observe a partial shift towards a highly mesenchymal phenotype in chemoresistant cells, suggesting the epithelial-to-mesenchymal transition (EMT) as a prevalent mechanism of resistance in subgroups of these cells. These insights highlight potential therapeutic targets, such as the PDGF signaling pathway mediating EMT, which could be exploited in this setting. Our study underscores the importance of single-cell approaches in understanding tumor heterogeneity and developing more effective, personalized treatment strategies to overcome chemoresistance in TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。