Derivation and Characterization of Murine and Amphibian Müller Glia Cell Lines

小鼠和两栖动物穆勒神经胶质细胞系的衍生和表征

阅读:5
作者:Ryan A Gallo, Farhan Qureshi, Thomas A Strong, Steven H Lang, Kevin A Pino, Galina Dvoriantchikova, Daniel Pelaez

Conclusions

We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational relevance: RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.

Methods

MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3-5 years post-metamorphic) X laevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2'-3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) and KN-62 were performed on RG17 cells.

Purpose

Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse.

Results

RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate-induced calcium responses in a dose-dependent manner. Conclusions: We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational relevance: RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。