Down-regulation of the insulin signaling pathway by SHC may correlate with congenital heart disease in Chinese populations

SHC 下调胰岛素信号通路可能与中国人群先天性心脏病相关

阅读:5
作者:Zhiling Luo, Longjiang Xu, Jiang Lu, Yan Shen, Yongyan Tang, Xiuyun Wang, Yilin Wu, Hao Sun, Tao Guo

Aims

Congenital heart disease (CHD) is one of the most common and severe congenital defects. The incidence of fetal cardiac malformation is increased in the context of maternal gestational diabetes mellitus (GDM). Therefore, we wanted to determine whether abnormalities in the insulin signaling pathway are associated with the occurrence of nonsyndromic CHD (ns-CHD).

Background/aims

Congenital heart disease (CHD) is one of the most common and severe congenital defects. The incidence of fetal cardiac malformation is increased in the context of maternal gestational diabetes mellitus (GDM). Therefore, we wanted to determine whether abnormalities in the insulin signaling pathway are associated with the occurrence of nonsyndromic CHD (ns-CHD).

Conclusion

We considered that changes in the insulin signaling pathway mediated by SHC might be involved in the heart development process. This mechanism might account for the increase in the incidence of fetal cardiac malformations in the context of GDM.

Methods

We used digital gene expression profiling (DGE) of right atrial myocardial tissue samples from eight ns-CHD patients and four controls. The genes potentially associated with CHD were validated by real-time fluorescence quantitative PCR analysis of right atrial myocardial tissues from 37 patients and 10 controls and the H9C2 cell line.

Results

The results showed that the insulin signaling pathway, which is mediated by the SHC gene family, was inhibited in the ns-CHD patients. The expression levels of five genes (PTPRF, SHC4, MAP2K2, MKNK2, and ELK1) in the pathway were significantly down-regulated in the patients' atrial tissues (P<0.05 for all). In vitro, the H9C2 cells cultured in high glucose (33 mmol/l) expressed less SHC4, MAP2K2, and Elk-1 than those cultured in low glucose (25 mmol/l). Furthermore, the high glucose concentration down-regulated the 25 genes associated with blood vessel development based on Gene Ontology (GO) term enrichment analyses of RNA-seq data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。