The SETD8/ELK1/bach1 complex regulates hyperglycaemia-mediated EndMT in diabetic nephropathy

SETD8/ELK1/bach1 复合物调节糖尿病肾病中高血糖介导的 EndMT

阅读:4
作者:Xue Li, Lihong Lu, Wenting Hou, Fei Wang, Ting Huang, Zhipeng Meng, Minmin Zhu

Background

Diabetic nephropathy (DN), the most common microvascular complication in patients with diabetes, induces kidney failure. Previous research showed that endothelial-to-mesenchymal transition (EndMT) of human glomerular endothelial cells (HGECs) is involved in the progression of DN. Moreover, SET domain-containing protein 8 (SETD8), ETS-domain containing protein (ELK1) and BTB and CNC homology 1 (bach1) all participate in endothelial injury. In this study, we hypothesize that the SETD8/ELK1/bach1 functional axis is involved in mediating EndMT in diabetic nephropathy.

Conclusions

SETD8 cooperates with ELK1 to regulate bach1 transcription, thus participating in the progression of DN. In addition, SETD8 interacts with bach1 to modulate Snail transcription, thus inducing EndMT in DN. SETD8 plays a core role in the SETD8/ELK1/bach1 functional axis, which participates in hyperglycaemia-mediated EndMT in DN, and SETD8 may be a potential therapeutic target for DN.

Methods

Immunohistochemistry, Western blotting and qPCR were performed to determine the protein and mRNA levels of genes in HGECs and the kidney tissues of participants and rats. Immunofluorescence, Co-IP and GST pulldown assays were performed to verify the direct interaction between SETD8 and ELK1. ChIP and dual-luciferase assays were performed to determine the transcriptional regulation of bach1 and Snail. AVV-SETD8 injection in rat kidney was used to verify the potential protective effect of SETD8 on DN.

Results

Our current study showed that hyperglycaemia triggered EndMT by increasing Snail expression both in vitro and in vivo. Moreover, high glucose increased bach1 expression in HGECs, positively regulating Snail and EndMT. As a transcription factor, ELK1 was augmented and participated in hyperglycaemia-induced EndMT via modulation of bach1 expression. Moreover, ELK1 was found to associate with SETD8. Furthermore, SETD8 negatively regulated EndMT by cooperating with bach1 to regulate Snail transcription. Furthermore, histone H4-Lys-20 monomethylation (H4K20me1), which is downstream of SETD8, was accompanied by ELK1 localization at the same promoter region of bach1. ELK1 overexpression enhanced bach1 promoter activity, which disappeared after specific binding site deletion. Mutual inhibition between ELK1 and SETD8 was found in HGECs. In vivo, SETD8 overexpression decreased ELK1 and bach1 expression, as well as EndMT. Moreover, SETD8 overexpression improved the renal function of rats with DN. Conclusions: SETD8 cooperates with ELK1 to regulate bach1 transcription, thus participating in the progression of DN. In addition, SETD8 interacts with bach1 to modulate Snail transcription, thus inducing EndMT in DN. SETD8 plays a core role in the SETD8/ELK1/bach1 functional axis, which participates in hyperglycaemia-mediated EndMT in DN, and SETD8 may be a potential therapeutic target for DN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。