Regulating the Solvation Structure of Electrolyte via Dual-Salt Combination for Stable Potassium Metal Batteries

双盐组合调控电解质溶剂化结构构建稳定钾金属电池

阅读:4
作者:Jimin Park, Gwangeon Oh, Un-Hyuck Kim, Muhammad Hilmy Alfaruqi, Xieyu Xu, Yangyang Liu, Shizhao Xiong, Adi Tiara Zikri, Yang-Kook Sun, Jaekook Kim, Jang-Yeon Hwang

Abstract

Batteries using potassium metal (K-metal) anode are considered a new type of low-cost and high-energy storage device. However, the thermodynamic instability of the K-metal anode in organic electrolyte solutions causes uncontrolled dendritic growth and parasitic reactions, leading to rapid capacity loss and low Coulombic efficiency of K-metal batteries. Herein, an advanced electrolyte comprising 1 M potassium bis(fluorosulfonyl)imide (KFSI) + 0.05 M potassium hexafluorophosphate (KPF6 ) dissolved in dimethoxyethane (DME) is introduced as a simple and effective strategy of regulated solvation chemistry, showing an enhanced interfacial stability of the K-metal anode. Incorporating 0.05 M KPF6 into the 1 M KFSI in DME electrolyte solution decreases the number of solvent molecules surrounding the K ion and simultaneously leads to facile K+ de-solvation. During the electrodeposition process, these unique features can lower the exchange current density between the electrolyte and K-metal anode, thereby improving the uniformity of K electrodeposition, as well as potentially suppressing dendritic growth. Even under a high current density of 4 mA cm-2 , the K-metal anode in 0.05 M KPF6 -containing electrolyte ensures high areal capacity and an unprecedented lifespan with stable Coulombic efficiency in both symmetrical half-cells and full-cells employing a sulfurized polyacrylonitrile cathode.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。