Thyroid Disrupting Chemicals in Mixture Perturb Thymocyte Differentiation in Xenopus laevis Tadpoles

混合物中的甲状腺干扰化学物质会干扰非洲爪蟾蝌蚪的胸腺细胞分化

阅读:7
作者:Connor C McGuire, B Paige Lawrence, Jacques Robert

Abstract

Endocrine disrupting chemicals (EDCs) can perturb the hypothalamic-pituitary-thyroid axis affecting human and wildlife health. Thyroid hormones (TH) are crucial regulators of metabolism, growth, and differentiation. The perinatal stage is most reliant on TH, thus vulnerable to TH disrupting chemicals. Dysregulation of TH signaling during perinatal development can weaken T cell function in maturity, raising the question of whether TH disrupting chemicals can perturb thymocyte development. Using Xenopus laevis tadpoles as model, we determined TH disrupting effects and thymocyte alterations following exposure to a mixture of common waterborne TH disrupting chemicals at concentrations similar to those found in contaminated water. This mixture included naphthalene, ethylene glycol, ethoxylated nonylphenol, and octylphenol, which have documented TH disrupting activity. Besides hypertrophy-like pathology in the thyroid gland and delayed metamorphosis, exposure to the mixture antagonized TH receptor-induced transcription of the Krüppel-like factor 9 transcription factor and significantly raised thyroid-stimulating hormone gene expression in the brain, two genes that modulate thymocyte differentiation. Importantly, exposure to this mixture reduced the number of Xenopus immature cortical thymocyte-specific-antigen (CTX+) and mature CD8+ thymocytes, whereas co-exposure with exogenous TH (T3) abolished the effect. When each chemical of the mixture was individually tested, only ethylene glycol induced significant antagonist effects on brain, thymic gene expression, and CD8+ thymocytes. These results suggest that EDCs in mixture are more potent than each chemical alone to perturb thymocyte development through TH-dependent pathway, and provide a starting point to research TH influence on thymocyte development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。