A PDLP-NHL3 complex integrates plasmodesmal immune signaling cascades

PDLP-NHL3 复合物整合胞间连丝免疫信号级联

阅读:7
作者:Estee E Tee, Matthew G Johnston, Diana Papp, Christine Faulkner

Abstract

The plant immune system relies on the perception of molecules that signal the presence of a microbe threat. This triggers signal transduction that mediates a range of cellular responses via a collection of molecular machinery including receptors, small molecules, and enzymes. One response to pathogen perception is the restriction of cell-to-cell communication by plasmodesmal closure. We previously found that while chitin and flg22 trigger specialized immune signaling cascades in the plasmodesmal plasma membrane, both execute plasmodesmal closure via callose synthesis at the plasmodesmata. Therefore, the signaling pathways ultimately converge at or upstream of callose synthesis. To establish the hierarchy of signaling at plasmodesmata and characterize points of convergence in microbe elicitor-triggered signaling, we profiled the dependence of plasmodesmal responses triggered by different elicitors on a range of plasmodesmal signaling machinery. We identified that, like chitin, flg22 signals via RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) to induce plasmodesmal closure. Further, we found that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1), PDLP5, and CALLOSE SYNTHASE 1 (CALS1) are common to microbe- and salicylic acid (SA)-triggered responses, identifying PDLPs as a candidate signaling nexus. To understand how PDLPs relay a signal to CALS1, we screened for PDLP5 interactors and found NON-RACE SPECIFIC DISEASE RESISTANCE/HIN1 HAIRPIN-INDUCED-LIKE protein 3 (NHL3), which is also required for chitin-, flg22- and SA-triggered plasmodesmal responses and PDLP-mediated activation of callose synthesis. We conclude that a PDLP-NHL3 complex acts as an integrating node of plasmodesmal signaling cascades, transmitting multiple immune signals to activate CALS1 and plasmodesmata closure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。