Glycolytic reprogramming controls periodontitis-associated macrophage pyroptosis via AMPK/SIRT1/NF-κB signaling pathway

糖酵解重编程通过 AMPK/SIRT1/NF-κB 信号通路控制牙周炎相关巨噬细胞焦亡

阅读:6
作者:Yani He, Yuting Wang, Xiangbin Jia, Yingxue Li, Yao Yang, Lifei Pan, Rui Zhao, Yue Han, Feng Wang, Xiaoyue Guan, Tiezhou Hou

Abstract

Glycolysis has been demonstrated as a crucial metabolic process in bacteria infected diseases via modulating the activity of pyroptosis. Macrophages are the most abundant immune cells that infiltrated in the infected periodontal tissues, which significantly influence the outcome of periodontitis (PD). However, the effect of glycolysis in regulating macrophage pyroptosis during PD development remains unknown. This study aimed to explore the role of glycolysis in PD-associated macrophage pyroptosis and periodontal degeneration. Clinical specimens were used to determine the emergence of macrophage pyroptosis and glycolysis in periodontal tissues by immunohistochemical analysis and western blot. For an in-depth understanding of the regulatory effect of glycolysis in the progression of macrophage pyroptosis associated periodontitis, both in vivo PD model and in vitro PD model were treated with 2-DG (2-Deoxy-d-glucose), a glycolysis inhibitor. The data showed that the blockade of glycolysis could significantly suppress the lipopolysaccharide (LPS) induced macrophage pyroptosis, resulting in an attenuation of the inflammatory response and bone resorption in periodontal lesions. Furthermore, we revealed that the regulatory effect of glycolysis on macrophage pyroptosis can be mediated via AMPK/SIRT1/NF-κB signaling pathway. Our study unveiled that suppressed glycolysis restrains the activity of PD-associated macrophage pyroptosis, osteoclastogenesis, and subsequent periodontal tissue destruction. These findings extend our knowledge of glycolysis in regulating PD-associated macrophage pyroptosis and provide a potential novel target for PD therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。