Attenuation of histone H4 lysine 16 acetylation (H4K16ac) elicits a neuroprotection against ischemic stroke by alleviating the autophagic/lysosomal dysfunction in neurons at the penumbra

组蛋白 H4 赖氨酸 16 乙酰化 (H4K16ac) 的减弱可通过缓解半暗带神经元的自噬/溶酶体功能障碍来引发针对缺血性中风的神经保护作用

阅读:6
作者:Dong Lingling, Qiu Miaomiao, Liu Yili, He Hongyun, Deng Yihao

Abstract

A modest autophagy benefits neuroprotection while an excessive autophagy leads to neuronal death after cerebral ischemia, but what governs an appropriate autophagy remains to be understood. Studies indicated that acetylation of histone H4 at lysine16 (H4K16ac) strongly modulated autophagic/lysosomal signaling pathway. Thus, this study was to investigate whether the autophagic neuronal injury could be alleviated by amending H4K16ac level after ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO)/reperfusion was prepared to investigate dynamic variations between H4K16ac and autophagy at the penumbra. The results illustrated that the significantly elevated H4K16ac was coupled with dramatically promoted autophagic activity at 4 h after the insult, suggesting H4K16ac tightly controlled autophagic signaling. After that, H4K16ac level was altered by pretreatment with trichostatin A (TSA, a H4K16ac facilitator) and MG149 (a H4K16ac inhibitor), respectively. Four hours after MCAO/reperfusion, the penumbral tissues were obtained to detect the key proteins in autophagic/lysosomal pathway by western blot and immunofluorescence, respectively. Meanwhile, the infarct volume, neurological deficits, and neuron survival were assessed to evaluate the neurological outcomes. The results showed that TSA-promoted H4K16ac led to an excessively up-regulated autophagy resulting in autophagic/lysosomal dysfunction, as indicated by the accumulated autophagic substrates and exacerbated lysosomal inefficiency in neurons. By contrast, MG149-depressed H4K16ac significantly down-regulated autophagic activity and thereby restored the impaired autophagic flux. Consequently, the neurological injury was markedly alleviated in MCAO + MG149 group, compared with that in MCAO group. Our study suggests that the H4K16ac attenuation elicits neuroprotection against ischemic stroke by ameliorating autophagic/lysosomal dysfunction in neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。