Stiffness-dependent dynamic effect of inflammation on keratocyte phenotype and differentiation

炎症对角膜细胞表型和分化的硬度依赖性动态影响

阅读:10
作者:Jialin Chen, Qingyun Mo, Renwang Sheng, Qiuzi Long, Zhixuan Chen, Chuanquan Liu, Aini Zhang, Yifan Luo, Jia Liu, Wei Zhang

Abstract

Although extensive studies have evaluated the regulation effect of microenvironment on cell phenotype and cell differentiation, further investigations in the field of the cornea are needed to gain sufficient knowledge for possible clinical translation. This study aims to evaluate the regulation effects of substrate stiffness and inflammation on keratocyte phenotype of corneal fibroblasts, as well as the differentiation from stem cells towards keratocytes. Soft and stiff substrates were prepared based on polydimethylsiloxane. HTK and stem cells were cultured on these substrates to evaluate the effects of stiffness. The possible synergistic effects between substrate stiffness and inflammatory factor IL-1βwere examined by qPCR and immunofluorescence staining. In addition, macrophages were cultured on soft and stiff substrates to evaluate the effect of substrate stiffness on the synthesis of inflammatory factors. The conditioned medium of macrophages (Soft-CM and Stiff-CM) was collected to examine the effects on HTK and stem cells. It was found that inflammatory factor IL-1βpromoted keratocyte phenotype and differentiation when cells were cultured on soft substrate (∼130 kPa), which were different from cells cultured on stiff substrate (∼2 × 103kPa) and TCP (∼106kPa). Besides, macrophages cultured on stiff substrates had significantly higher expression ofIL-1βandTnf-αas compared to the cells cultured on soft substrates. And Stiff-CM decreased the expression of keratocyte phenotype markers as compared to Soft-CM. The results of our study indicate a stiffness-dependent dynamic effect of inflammation on keratocyte phenotype and differentiation, which is of significance not only in gaining a deeper knowledge of corneal pathology and repair, but also in being instructive for scaffold design in corneal tissue engineering and ultimate regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。