Transposable Element Insertion and Epigenetic Modification Cause the Multiallelic Variation in the Expression of FAE1 in Sinapis alba

转座因子插入和表观遗传修饰导致白芥FAE1基因表达的多等位基因变异

阅读:8
作者:Fangqin Zeng, Bifang Cheng

Abstract

Naturally occurring heritable variation provides a fundamental resource to reveal the genetic and molecular bases of traits in forward genetic studies. Here, we report the molecular basis of the differences in the four alleles E1, E2, E3, and e of the FATTY ACID ELONGATION1 (FAE1) gene controlling high, medium, low, and zero erucic content in yellow mustard (Sinapis alba). E1 represents a fully functional allele with a coding DNA sequence (CDS) of 1521 bp and a promoter adjacent to the CDS. The null allele e resulted from an insertional disruption in the CDS by Sal-PIF, a 3100-bp PIF/Harbinger-like DNA transposon, whereas E2 and E3 originated from the insertion of Sal-T1, a 4863-bp Copia-like retrotransposon, in the 5' untranslated region. E3 was identical to E2 but showed cytosine methylation in the promoter region and was thus an epiallele having a further reduction in expression. The coding regions of E2 and E3 also contained five single-nucleotide polymorphisms (SNPs) not present in E1, but expression studies in Saccharomyces cerevisiae indicated that these SNPs did not affect enzyme functionality. These results demonstrate a comprehensive molecular framework for the interplay of transposon insertion, SNP/indel mutation, and epigenetic modification influencing the broad range of natural genetic variation in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。