Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer

基于知识图谱的推荐框架可识别 EGFR 突变型非小细胞肺癌的耐药驱动因素

阅读:6
作者:Anna Gogleva, Dimitris Polychronopoulos, Matthias Pfeifer, Vladimir Poroshin, Michaël Ughetto, Matthew J Martin, Hannah Thorpe, Aurelie Bornot, Paul D Smith, Ben Sidders, Jonathan R Dry, Miika Ahdesmäki, Ultan McDermott, Eliseo Papa, Krishna C Bulusu

Abstract

Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves running functional genetic screens, such as CRISPR, followed by manual triage of significantly enriched genes. This triage process to identify 'high value' hits resulting from the CRISPR screen involves manual curation that requires specialized knowledge and can take even experts several months to comprehensively complete. To find key drivers of resistance faster we build a recommendation system on top of a heterogeneous biomedical knowledge graph integrating pre-clinical, clinical, and literature evidence. The recommender system ranks genes based on trade-offs between diverse types of evidence linking them to potential mechanisms of EGFRi resistance. This unbiased approach identifies 57 resistance markers from >3,000 genes, reducing hit identification time from months to minutes. In addition to reproducing known resistance markers, our method identifies previously unexplored resistance mechanisms that we prospectively validate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。