P-Cresylsulfate, the Protein-Bound Uremic Toxin, Increased Endothelial Permeability Partly Mediated by Src-Induced Phosphorylation of VE-Cadherin

对甲苯磺酸盐是一种与蛋白质结合的尿毒症毒素,它可增加内皮通透性,部分由 Src 诱导的 VE-钙粘蛋白磷酸化介导

阅读:9
作者:Shih-Chieh Chen, Shin-Yin Huang, Chia-Chun Wu, Chiung-Fang Hsu

Abstract

The goal of our study was to investigate the impact of p-cresylsulfate (PCS) on the barrier integrity in human umbilical vein endothelial cell (HUVEC) monolayers and the renal artery of chronic kidney disease (CKD) patients. We measured changes in the transendothelial electrical resistance (TEER) of HUVEC monolayers treated with PCS (0.1-0.2 mM) similar to serum levels of CKD patients. A PCS dose (0.2 mM) significantly decreased TEER over a 48-h period. Both PCS doses (0.1 and 0.2 mM) significantly decreased TEER over a 72-h period. Inter-endothelial gaps were observed in HUVECs following 48 h of PCS treatment by immunofluorescence microscopy. We also determined whether PCS induced the phosphorylation of VE-cadherin at tyrosine 658 (Y658) mediated by the phosphorylation of Src. Phosphorylated VE-cadherin (Y658) and phosphorylated Src levels were significantly higher when the cells were treated with 0.1 and 0.2 mM PCS, respectively, compared to the controls. The endothelial barrier dysfunction in the arterial intima in CKD patients was evaluated by endothelial leakage of immunoglobulin G (IgG). Increased endothelial leakage of IgG was related to the declining kidney function in CKD patients. Increased endothelial permeability induced by uremic toxins, including PCS, suggests that uremic toxins induce endothelial barrier dysfunction in CKD patients and Src-mediated phosphorylation of VE-cadherin is involved in increased endothelial permeability induced by PCS exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。