microRNA-3129 promotes cell proliferation in gastric cancer cell line SGC7901 via positive regulation of pRb

microRNA-3129通过正向调控pRb促进胃癌细胞系SGC7901细胞增殖

阅读:8
作者:Shaofeng Yang, Nan Sheng, Lili Pan, Jing Cao, Jiao Liu, Ran Ma

Abstract

Several microRNAs (miRNAs) have been reported as oncogenes or tumor suppressors in many cancers, including gastric cancer (GC). However, the role and molecular mechanism of miR-3129 in GC is largely unknown. We aimed to explore the function and the underlying molecular mechanism of miR-3129 in GC. Cancer tissues and corresponding adjacent tissues were collected from 50 patients with GC, and the expression of miR-3129 was detected by RT-qPCR. The expression of miR-3129 and pRb in human GC cell line SCG7091 was altered by transient transfection. Thereafter, MTT and flow cytometry assays were used to analyze cell viability and cell cycle. The expression of cyclin E, CDK2, CDK2 inhibitors (p16 and 21), and pRb were detected by RT-qPCR and western blot. A significant up-regulation of miR-3129 was observed in GC tissues compared to adjacent tissues. Overexpression of miR-3129 significantly improved cell viability after 4 days of post-transfection. Flow cytometry assay results showed that the miR-3129 overexpression arrested more SGC7901 cells at S phase. Moreover, overexpression of miR-3129 down-regulated the expression of CDK2 inhibitors while it up-regulated the expression levels of cyclin E, CDK2, and pRb. Interestingly, we found that pRb inhibition reversed the effect of miR-3129 inhibitor on cell proliferation in SGC7901 cells, increased cell viability, reduced cells at G0/1 phase, and modulated the expression of proliferation-related factors. Our results revealed that miR-3129 functioned as an oncogene through positive regulation of pRb and may prove to be a promising option for molecular therapy of GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。