Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus

小鼠下丘脑弓状核中烟碱乙酰胆碱受体亚型的分子和细胞特征

阅读:6
作者:Cali A Calarco, Zhiying Li, Seth R Taylor, Somin Lee, Wenliang Zhou, Jeffrey M Friedman, Yann S Mineur, Cecilia Gotti, Marina R Picciotto

Abstract

Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression. Immunoprecipitation of assembled nAChRs revealed that the β4 subunit forms assembled channels with α3, β2 and α4, but not other subunits found in the ARC. Finally, using cell type-selective, virally delivered small hairpin RNAs targeting either the β4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。