Multiple Mild Stimulations Reduce Membrane Distribution of CX3CR1 Promoted by Annexin a1 in Microglia to Attenuate Excessive Dendritic Spine Pruning and Cognitive Deficits Caused by a Transient Ischemic Attack in Mice

多次温和刺激可降低小胶质细胞中 Annexin a1 促进的 CX3CR1 膜分布,从而减轻小鼠短暂性脑缺血发作引起的过度树突棘修剪和认知缺陷

阅读:6
作者:Lu Zheng, Yi Wang, Bin Shao, Huijuan Zhou, Xing Li, Cai Zhang, Ning Sun, Jing Shi

Abstract

A transient ischemic attack (TIA) can cause reversible and delayed impairment of cognition, but the specific mechanisms are still unclear. Annexin a1 (ANXA1) is a phospholipid-binding protein. Here, we confirmed that cognition and hippocampal synapses were impaired in TIA-treated mice, and this could be rescued by multiple mild stimulations (MMS). TIA promoted the interaction of ANXA1 and CX3CR1, increased the membrane distribution of CX3CR1 in microglia, and thus enhanced the CX3CR1 and CX3CL1 interaction. These phenomena induced by TIA could be reversed by MMS. Meanwhile, the CX3CR1 membrane distribution and CX3CR1-CX3CL1 interaction were upregulated in primary cultured microglia overexpressing ANXA1, and the spine density was significantly reduced in co-cultured microglia overexpressing ANXA1 and neurons. Moreover, ANXA1 overexpression in microglia abolished the protection of MMS after TIA. Collectively, our study provides a potential strategy for treating the delayed synaptic injury caused by TIA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。