Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra

血管内皮生长因子促进脑毛细血管的周细胞覆盖,改善随后的局灶性脑缺血期间的脑血流,并保留代谢半暗带

阅读:5
作者:Anil Zechariah, Ayman ElAli, Thorsten R Doeppner, Fengyan Jin, Mohammad R Hasan, Iris Helfrich, Günter Mies, Dirk M Hermann

Background and purpose

Therapeutic angiogenesis aims at improving cerebral blood flow by amplification of vascular sprouting, thus promoting tissue survival under conditions of subsequent ischemia. It remains unknown whether induced angiogenesis leads to the formation of functional vessels that indeed result in hemodynamic improvements. Observations of hemodynamic steal phenomena and disturbed neurovascular integrity after vascular endothelial growth factor delivery questioned the concept of therapeutic angiogenesis.

Conclusions

That cerebral blood flow is increased during subsequent ischemic episodes, leading to the stabilization of cerebral energy state, fosters hope that by promoting new vessel formation brain tissue survival may be improved.

Methods

Mice were treated with recombinant human vascular endothelial growth factor (0.02 μg/d; intracerebroventricular) for 3 to 21 days and subsequently exposed to 90-minute middle cerebral artery occlusion. Angiogenesis, histological brain injury, IgG extravasation, cerebral blood flow, protein synthesis and energy state, and pericyte coverage on brain capillaries were evaluated in a multiparametric approach combining histochemical, autoradiographic, and regional bioluminescence techniques.

Purpose

Therapeutic angiogenesis aims at improving cerebral blood flow by amplification of vascular sprouting, thus promoting tissue survival under conditions of subsequent ischemia. It remains unknown whether induced angiogenesis leads to the formation of functional vessels that indeed result in hemodynamic improvements. Observations of hemodynamic steal phenomena and disturbed neurovascular integrity after vascular endothelial growth factor delivery questioned the concept of therapeutic angiogenesis.

Results

Vascular endothelial growth factor increased brain capillary density within 10 days and reduced infarct volume and inflammation after subsequent middle cerebral artery occlusion, and, when delivered for prolonged periods of 21 days, enhanced postischemic blood-brain barrier integrity. Increased cerebral blood flow was noted in ischemic brain areas exhibiting enhanced angiogenesis and was associated with preservation of the metabolic penumbra, defined as brain tissue in which protein synthesis has been suppressed but ATP preserved. Vascular endothelial growth factor enhanced pericyte coverage of brain endothelial cells via mechanisms involving increased N-cadherin expression on cerebral microvessels. Conclusions: That cerebral blood flow is increased during subsequent ischemic episodes, leading to the stabilization of cerebral energy state, fosters hope that by promoting new vessel formation brain tissue survival may be improved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。