The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans

转录因子 SKN-1 和解毒基因 ugt-22 改变阿苯达唑对秀丽隐杆线虫的疗效

阅读:7
作者:Pauline Fontaine, Keith Choe

Abstract

Parasitic nematodes infect over 1/4 th of the human population and are a major burden on livestock and crop production. Benzimidazole class anthelmintics are widely used to treat infections, but resistance is a widespread problem. Mutation of genes encoding the benzimidazole target β-tubulin is a well-established mechanism of resistance, but recent evidence suggests that metabolism of the drugs may also occur. Our objective was to investigate contributions of the detoxification-response transcription factor SKN-1 to anthelmintic drug resistance using C. elegans. We find that skn-1 mutations alter EC50 of the common benzimidazole albendazole in motility assays by 1.5-1.7 fold. We also identify ugt-22 as a detoxification gene associated with SKN-1 that influences albendazole efficacy. Mutation and overexpression of ugt-22 alter albendazole EC50 by 2.3-2.5-fold. The influence of a nematode UGT on albendazole efficacy is consistent with recent studies demonstrating glucose conjugation of benzimidazoles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。