Cinobufacini enhances the therapeutic response of 5-Fluorouracil against gastric cancer by targeting cancer stem cells via AKT/GSK-3β/β-catenin signaling axis

华蟾素通过 AKT/GSK-3β/β-catenin 信号轴靶向癌症干细胞,增强 5-氟尿嘧啶对胃癌的治疗反应

阅读:6
作者:Jiejie Sun, Sufeng Zhang, Meng Wang, Hui Cheng, Yuqing Wang, Shiming He, Qiang Zuo, Ning Wang, Qinglin Li, Manman Wang

Background

Gastric cancer stem cells (GCSCs) play crucial role in the development, recurrence, and resistance of gastric cancer (GC). Cinobufacini, a traditional Chinese medicine, offers significant advantages in improving tumor therapy. However, pre-clinical investigation into the antitumor effect and mechanism of Cinobufacini on GC is still lacking. Additionally, it has not been reported whether Cinobufacini is related to cancer stem cells (CSCs).

Conclusions

Cinobufacini enhances the therapeutic response of 5-FU against GC by targeting CSCs via AKT/GSK-3β/β-catenin signaling axis. Our findings offer a crucial insight into the molecular mechanism of Cinobufacini's anticancer activity in GC.

Methods

The CCK-8, clone formation, EdU staining, transwell and wound healing experiments were performed to assess the cell toxicity of Cinobufacini and demonstrate the preventive effects of Cinobufacini on proliferation, invasion, and migration of GC cells. Elucidating the underlying mechanism of Cinobufacini in GC based on the transcriptome sequencing. Flow cytometry assays, sphere formation assays, subcutaneous xenograft model in nude mice, and immunofluorescent staining have been used to investigate whether the anti-GC effect of Cinobufacini is associated with GCSCs and enhancing therapeutic response to 5-Fluorouracil (5-FU).

Results

Cinobufacini exerts minimal impact on normal human gastric epithelium cell GES-1, while significantly suppressing the proliferation, invasion, and migration of GC cell lines. Additionally, Cinobufacini attenuates the stemness of GCSCs by disrupting the AKT/GSK-3β/β-catenin signaling cascade. Moreover, Cinobufacin enhances the anti-tumor effects of 5-FU against GCSCs by reducing in vitro sphere formation and inhibiting subcutaneous graft tumor growth in vivo. Conclusions: Cinobufacini enhances the therapeutic response of 5-FU against GC by targeting CSCs via AKT/GSK-3β/β-catenin signaling axis. Our findings offer a crucial insight into the molecular mechanism of Cinobufacini's anticancer activity in GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。